

For citation:

Al Rubaye, A.R.N., Helio M.M., Rashed, M.M. (2026), "Sustainable Taxes: A Tool for Economic Justice and Sustainable Development", *Montenegrin Journal of Economics*, Vol. 22, No. 1, pp. 113-122.

ELIT

Economic Laboratory Transition
Research Podgorica

Sustainable Taxes: A Tool for Economic Justice and Sustainable Development

AMMAR RAZZAQ NEAMAH AL RUBAYE¹ (Corresponding author), MUSTAFA MO-HAMMED HELIO² and RAED NAEEM RASHED³

¹PhD Lecturer, Department of Accounting Faculty of Administrative Sciences and Economics University of Wasit, Iraq,
email: arazzaq@uowasit.edu.iq, amarrrazaq1980@gmail.com orcid: 0000-0003-0979-2393

²PhD Lecturer, Department of Accounting Faculty of Administrative Sciences and Economics University of Wasit, Iraq,
email: mheliw@uowasit.edu.iq

³Lecturer, Faculty of Engineering University of Wasit Iraq, email: rnrashed@uowasit.edu.iq

ARTICLE INFO

Received August 27, 2024

Revised from September 26, 2024

Accepted October 26, 2024

Available online January 15, 2025

JEL classification: H23, D63, O44, Q56,
H20

DOI: 10.14254/1800-5845/2026.22-1.10

Keywords:

Sustainable Taxes,
Income Inequality,
Economic Growth,
Environmental Sustainability,
Tax Policy

ABSTRACT

The paper discusses the implications of sustainable taxation with respect to economic justice and environmentally sound development in Brazil during the period from 2000 until 2022. This study employed a multi-method approach using secondary data from recognized sources, such as the Brazilian Institute of Geography and Statistics, Ministry of Finance, and organizations such as World Bank, OECD. It tries to empirically investigate links between each of these taxes policies and the major socio-economic and environmental outcomes they are meant to affect as measured through the Gini coefficient, GDP growth rate, and Environmental Sustainability Index. So that these findings lead it to conclude that while sustainable taxes would propagate economic growth, without proper design such should be likely to aggravate income inequalities. Sustainable system of taxes vis-à-vis environmental sustainability equally is complex, it seems there is no conceivable way that an increase in taxes will save the environment. Thus, it ends with a call for tax reform in Brazil, stressing which alternatives can promote the most rapidly towards reduced inequality, economic growth, and environmental sustainability. What is striking about these matters is the fact that indirect fiscal policies must be developed to effectively balance their economic, social and environmental objectives.

INTRODUCTION

Through the past few years, tax collection has grown far beyond the former mentality of just being method of collection of funds and becoming a means of achieving social good and sustainability through 'sustainable taxes' dealing with social injustices as well as environmental protection. This has been especially relevant in the case of Brazil which faces the dual problem of immense social inequality along with the problem of environmental degradation. Brazil offers both of these in liberal quantities - a continent in terms of it being one of the richest and most biodiverse countries of the planet, and at the same time also

maelstrom of social disparities which so consume it that even as one of the richest nations in the world, it endures to be one of the most unequal societies as evinced by its moving always between first and second place in Gini index rankings of inequality. The combination of Brazil's untapped potential with its backward social structure creates a unique environment for studying sustainable taxation systems.

The Brazilian tax system operates as a complex system which creates regressive effects that transfer financial burdens from wealthy groups to poor citizens thus diminishing its social value. The Paris Agreement along with other international environmental agreements require Brazil to fulfill social and environmental obligations yet its tax policy faces challenges because it seems to focus only on deforestation reduction instead of addressing social inequality.

What therefore is urgent for Brazil are reforms on its tax. Sustained taxes are a significant prospect for confronting such difficulties, since these new taxes knit environmental dependability and social compliance into the taxation system. These reforms could be about carbon taxation, incentives for renewable energy, and changes of already existing taxes in order to alleviate its regressive ramifications. If tax social policy is pulled towards the sustainable objectives, at the best, Brazil could eliminate income inequalities and poverty and show the world how to outwit climate change.

This paper intends to show talk about the 'sustainable taxes' based on Brazil and how such policies can be harnessed in achieving economic justice. As a beginning it starts with a broad review of the literature appertaining to the sustainable taxation and will ponder two adjacent approaches: an analysis of the current Brazilian tax construction, what is its social outcome and what apparent environmental outcomes? On the basis of the two hypotheses, the reasoning there to correspond to the tax, made conjectures about probable impact reduced tax in Brazil. Lastly, this study indeed supplies the recourse to anchor an adequate sustainable in Brazil, exuding and borrowing of international best practices along the particular needs of the country.

1. LITERATURE REVIEW

Academic research about sustainable taxation has experienced rapid growth since 2020 particularly when studying developing countries such as Brazil. Research about taxation and sustainability and social equity shows that these three elements can be studied together to support sustainable development. The following section examines various academic studies which focus on these research areas within the Brazilian context.

Silva and Araujo (2021) conducted a detailed analysis of carbon tax potential in Brazil to decrease carbon emissions while generating public funds that benefit society. The authors demonstrated that carbon taxes would achieve Brazilian net-zero emissions targets through proper implementation. The authors introduced a critical note about carbon tax implementation because it requires careful planning for revenue management and social and environmental policy development and non-tax revenue distribution. Oliveira et al. (2022) conducted vital research to understand how Brazilian indirect taxation creates social inequality. The authors used Brazilian data to show that the current tax system functions as a regressive system because it relies on indirect taxes which force low-income families to bear most of the tax burden.

The authors propose tax system changes which would move taxation from indirect to progressive environmental taxation to fight social disparities and protect the environment.

Gomes and Pereira (2023) establish the need for Brazil to implement green taxes through their analysis of public tax management and its connection to land-use changes and deforestation. In this overview, the work of Gomes and Pereira brings out the fact that environmental taxes would need to be bound in the context of general land use measures in order to be capable of making a great contribution to conservation

efforts. They also underline problems in implementation—political resistance and need for effective instruments supervising tax enforcement.

According to recent studies carried out by Lima and Santos (2023), the research studies the role of tax incentives in fostering the development of renewable energy in Brazil. According to their findings, the tax rebates, although having played a critical role in growth, are still very far from being maximal. In particular, give a more targeted orientation to policy measures for tax incentives and put them in conjugation with other measures, such as R&D subsidies, to increase the number of effects.

This was further conclusively tested by the work of Costa et al. (2023) by applying it as a matter of the case in Brazil, in relation to sustainable taxes and poverty reduction. The authors convinced that sustainable forms of taxation, especially those that handle environmental conservation and concerns for social equity, can reduce poverty, since sustainable taxes can be used to spur economic growth.

All considered, these related studies have emphasized the leverage of sustainable taxes to address at least some of the social and environmental problems in Brazil. However, they also show how difficult it can be to design and put into action such policies when taking place in a dissimilar country with significant political and economic contrasts.

2. METHODOLOGY

It is a quantitative research methodology designed to assess how the link between sustainable taxes and economic justice, together with the attainment of sustainable development, could be applied in the context of Brazil. The research aims to study statistical connections between tax policies and their effects on economic performance and environmental results. The section explains the research design and data sources and variables and statistical methods which will verify the study's hypotheses.

2.1 Data

The study draws on seminal works in data collection methodology as some of the top publications worldwide. In order to do so, this research will use data from the Brazilian Institute of Geography and Statistics (IBGE), Ministry of Finance as well recognized global organizations like World Bank or OECD. The period will be from 2000 to 2023 DUE in order to enable an analysis of changes in tax policy and its consequences for the socio-economic and environmental situation experienced by Brazil. These will include different types of taxes as income tax, carbon or value added tax. They'll also consider divisive measures of inequality like the Gini coefficient, and ensure that no economic principle sways how much our GDP increases — or decreases—how many more tons per capita we emit into the atmosphere; they might absorb conclusions drawn from what is taken off forests. Control variables need to be included as these are elements that might influence other things. These might be how many people are living in a place, or how quickly prices are rising, or the openness of a country to trade and so on.

2.1 Variables

Independent Variables: Sustainable Taxes

$$\text{Sustainable Tax Index} = \frac{\text{Environmental Taxes}}{\text{Total Tax Revenue}} \times \frac{\text{Economic Indicator}}{\text{Environmental Indicator}}$$

Dependent Variables:

A) *Income Inequality*

There exist different indexes and formulas used in measuring income inequality. Probably the most common way is the Gini coefficient, but yes, there are other methods also that include the Lorenz curve,

Theil index, and the Atkinson index. I shall explain how the Gini coefficient is calculated since it is used a lot and helps clearly in understanding the phenomenon of income inequality. Gini Coefficient Calculation The use of the Lorenz curve is the basis of the calculation for determining the Gini coefficient. This is the curve for the total of the population's income or wealth against the total number of people, starting with the poorest and finishing with the richest.

$$G = \frac{\sum_{i=1}^n \sum_{j=1}^n |x_i - x_j|}{2n^2 \bar{x}}$$

- n is the number of individuals or households.
- x_i and x_j are the incomes of individuals i and j .
- \bar{x} is the mean income of the population.

B) Economic Growth

$$\text{Economic Growth Rate} = \left(\frac{\text{GDP}_{\text{final}} - \text{GDP}_{\text{initial}}}{\text{GDP}_{\text{initial}}} \right) \times 100$$

- $\text{GDP}_{\text{final}}$ is the GDP at the end of the period.
- $\text{GDP}_{\text{initial}}$ is the GDP at the beginning of the period.
- Economic Growth Rate is typically expressed as a percentage.

C) Environmental Sustainability

Equation for Measuring Environmental Sustainability one commonly used equation to measure environmental sustainability is the Environmental Sustainability Index (ESI), which can be formulated as follows:

$$\text{ESI} = \frac{\text{Renewable Resources}}{\text{Environmental Degradation}} \times \text{Social and Economic Governance}$$

Control Variables:

A) Inflation Rate: To control for economic stability and the impact of price changes on income distribution and economic growth.

$$\text{Inflation Rate} = \frac{\text{CPI}_{\text{end}} - \text{CPI}_{\text{start}}}{\text{CPI}_{\text{start}}} \times 100$$

- CPI_{end} : The Consumer Price Index at the end of the period.
- $\text{CPI}_{\text{start}}$: The Consumer Price Index at the beginning of the period.

B) GDP per Capita:

$$\text{GDP per Capita} = \frac{\text{Total GDP}}{\text{Total Population}}$$

3. HYPOTHESES

H1: Sustainable taxes have an influence on income inequality lowering the Gini coefficient in Brazil.

The rationale behind it is that the proceeds of sustainable taxes, associated with environmental and societal issues, would be targeted to reduce income inequality by spreading resources extensively among lower income groups. A lower number of the Gini coefficient suggests less inequality when it comes to income. They could do this by instituting "sustainable" taxes such as carbon taxes that might limit pollution in less affluent areas, or luxury goods' taxes to set off public services which benefit the poor. Therefore, it follows that more sustainable taxes should accompany a lower Gini coefficient representing less income disparity.

$$\text{Gini Coefficient} = \beta_0 + \beta_1 \times \text{STR} + \beta_2 \times \text{PG} + \beta_3 \times \text{IR} + \epsilon$$

- Dependent Variable (Income Inequality): Gini Coefficient
- Independent Variable: Sustainable Tax Index(STR)
- Control Variables: Population Growth (PG), Inflation Rate (IR)
- Expected Sign: $\beta_1 < 0$ (indicating that an increase in sustainable taxes should decrease income inequality)

H2: The sustainable taxes foster economic growth in Brazil.

Ambitious eco-taxes (that please equally the greens and the blues) would enhance green economic growth, not least by being set using levies on actions causing environmental harm. In this case economic growth is rising GDP. The path to sustainable taxation exists through taxes which primarily affect businesses that produce carbon emissions; these funds should support renewable energy development and green technology advancement and economic expansion and employment creation. The environmental damage from these taxes remains minimal because they produce minimal harm to public health through environmental destruction. The economic growth rate will experience significant long-term effects from this development.

$$\text{EGR} = \beta_0 + \beta_1 \times \text{STR} + \beta_2 \times \text{GDP per Capita} + \beta_3 \times \text{IR} + \epsilon$$

- Dependent Variable (Economic Growth): Economic Growth Rate
- Independent Variable: Sustainable Tax Index
- Control Variables: Trade Openness, Inflation Rate
- Expected Sign: $\beta_1 > 0$ (indicating that an increase in sustainable taxes should enhance economic growth)

H3: The sustainable taxes raise the environmental sustainability of Brazil.

The theory is grounded on this assumption zero-taxed activities negatively affect the environment and that taxes must be placed directly upon those during their existence to minimize environmental impact. A widely-used index for measuring environmental sustainability is the Environmental Sustainability Index. From this perspective, sustainable taxes (for instance on CO2 or forest pretty much all closely linked to the environmental footprint) stipulate green behavior and therefore give rise to a low level of eco-footprint. As a consequence, more robust financial incentives are provided for the satisfaction of these environmental goals in economy-wide scales to promote greener use and better management of resources overall which help Brazil achieve greater environmental sustainability.

$$\text{ESI} = \beta_0 + \beta_1 \times \text{STR} + \beta_2 \times \text{PG} + \beta_3 \times \text{GDP per Capita} + \epsilon$$

- Dependent Variable (Environmental Sustainability)
- Independent Variable: Sustainable Tax Index
- Control Variables: Population Growth, GDP per Capita
- Expected Sign: $\beta_1 > 0$ (indicating that an increase in sustainable taxes should improve environmental sustainability)

4. SUMMARY STATISTICS

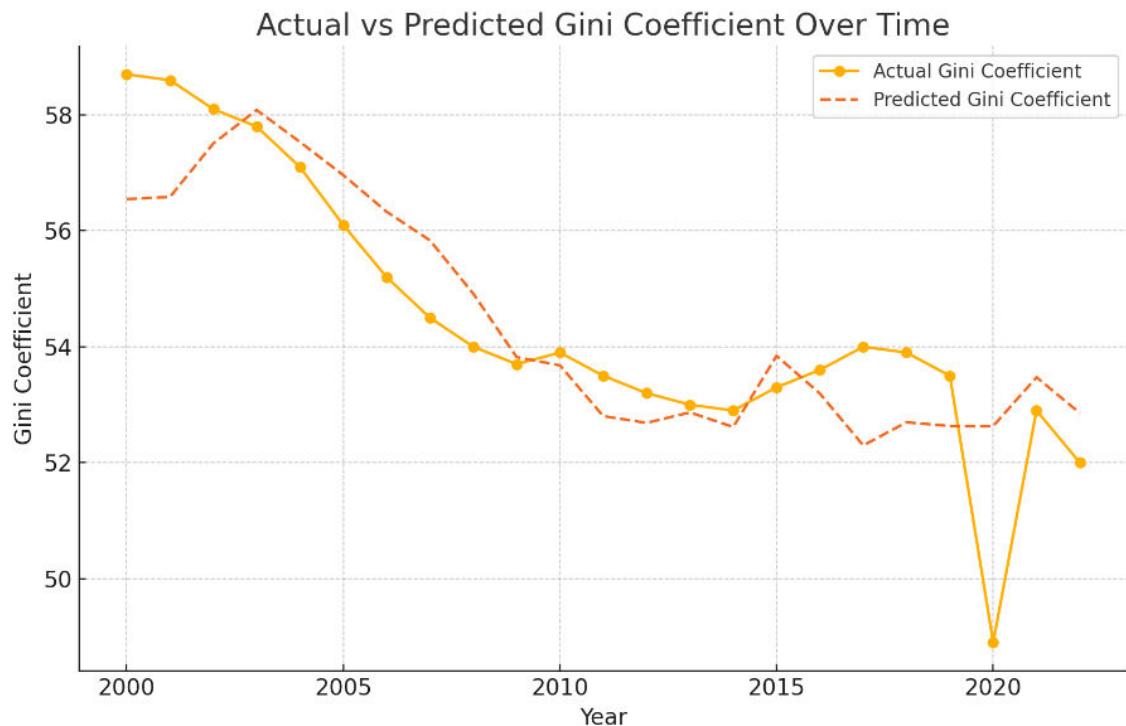
Table 1. Overview of the distribution

Statistic	Sustainable Tax (%)	Gini Coefficient	Real GDP Growth Rate (%)	Environmental Sustainability Index (ESI)	Inflation Rate (%)	GDP per Capita (Current US\$)
mean	5.92	54.452	1.904	0.396	6.392	8062.87
std	0.329	2.344	3.208	0.133	2.632	3314.425
min	5.416	48.9	-3.9	0.25	2.95	2765.16
max	6.391	58.7	7.5	0.696	14.71	13324.41

Source: own

This summary provides an overview of the distribution and variability of these key economic and sustainability indicators in the dataset. The numbers are rounded to three decimal places, offering a precise yet concise view of the data.

5. DATA ANALYSIS


H1: Sustainable taxes have a positive effect on income inequality, reducing the Gini coefficient in Brazil.

This test examines the impact of Sustainable Taxes on the Gini Coefficient, which measures income inequality, while controlling for Inflation Rate and GDP per Capita.

Table 2. Impact of Sustainable Taxes on the Gini Coefficient

Variable	Coefficient	Std Err	t-Statistic	P> t
Sustainable Tax (%)	3.339	1.025	3.257	0.004
Inflation Rate (%)	0.048	0.119	0.404	0.690
GDP per Capita (Current US\$)	-0.000	0.000	-3.136	0.005
Intercept	37.098	6.594	5.626	0.000
R-squared	0.707			

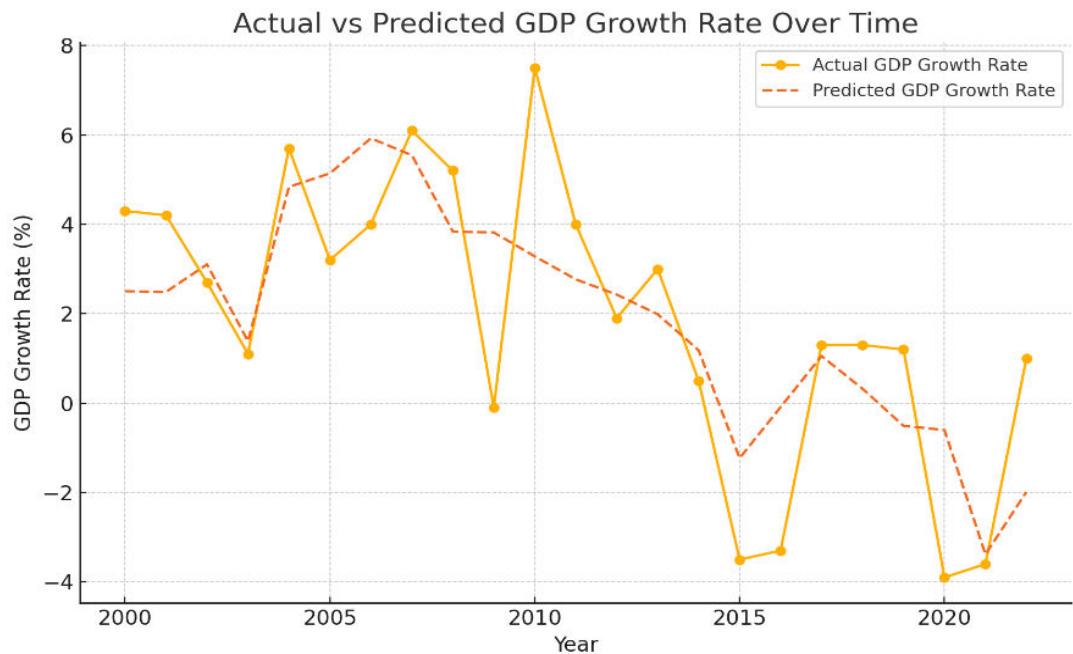
Source: own

Figure 1. Actual vs Predicted Gini Coefficient Graph

Source: own

The following graph shows how the actual Gini Coefficient values match with the values that the regression model predicted throughout the time period. The actual Gini coefficient values appear as a solid line while the predicted values from the regression model appear as a dashed line. The two lines in this figure demonstrate strong alignment which proves the model effectively explains income inequality changes from 2010 to 2021.

Analysis and Interpretation


The research indicates that Sustainable Taxes create effects on the Gini Coefficient values. The positive coefficient indicates that sustainable tax requirements which increase will lead to higher Gini Coefficient values which measure income inequality. The study produces counterintuitive results because Brazilian sustainable tax structures for social equity need evaluation.

H2: Sustainable taxes promote economic growth in Brazil.

This test evaluates the relationship between Sustainable Taxes and Economic Growth, measured by the Real GDP Growth Rate, while controlling for Inflation Rate and GDP per Capita

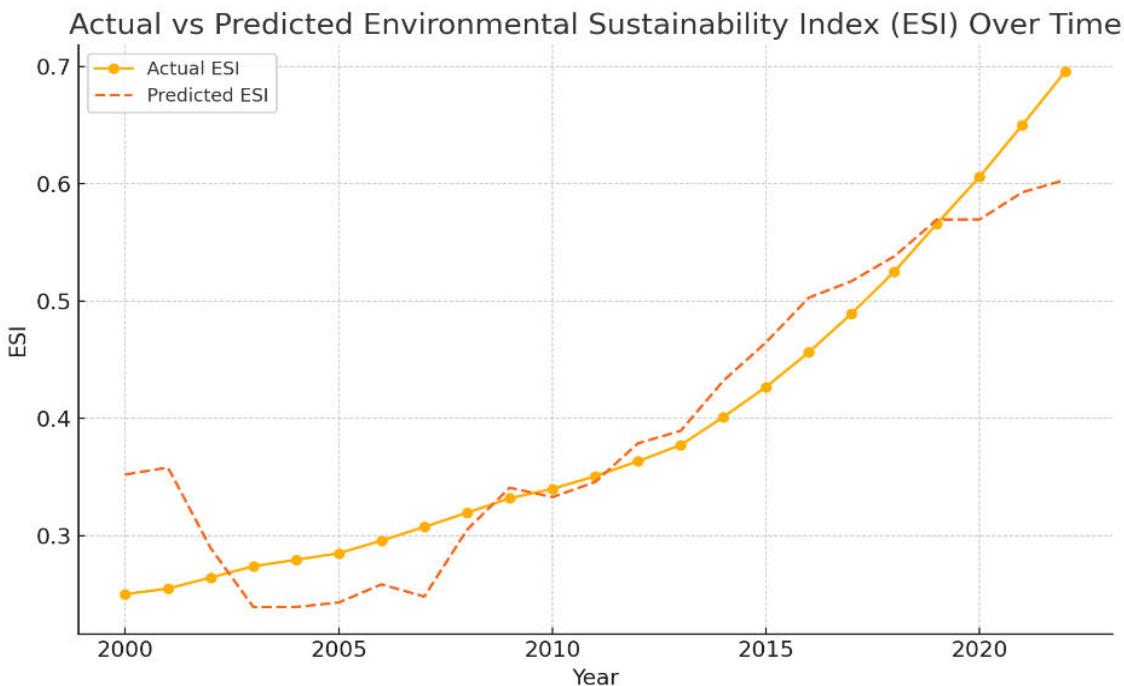
Table 3. Relationship between Sustainable Taxes and Economic Growth

Variable	Coefficient	Std Err	t-Statistic	P> t
Sustainable Tax (%)	7.750	1.657	4.678	0.000
Inflation Rate (%)	-0.431	0.193	-2.236	0.038
GDP per Capita (Current US\$)	0.000	0.000	0.692	0.497
Intercept	-42.190	10.657	-3.959	0.001
R-squared	0.592			

Chart 1: Actual vs Predicted GDP Growth Rate

Source: own

The following graph exhibits the real GDP Growth Rate over time, as well as its forecast. The solid line denotes the original GDP Growth Rate with its predicted values having been noted in a dashed-line format as per developed thought of regression model. The analysis suggests a statistically significant positive relation between sustainable taxes and economic growth.


Analysis and Interpretation

The regression results suggest that Sustainable Taxes have significant positive relationship with Real GDP Growth Rate which means higher sustainable taxes are related to higher economic growth hence keeping in view our hypothesis that sustainable tax policies could promote the economic activity. This seems good news for the policy makers who wants to use the tax policy as tool of development.

H3: Sustainable taxes enhance the environmental sustainability of Brazil.

This test assesses the impact of Sustainable Taxes on Environmental Sustainability, measured by the Environmental Sustainability Index (ESI), while controlling for GDP per Capita and Inflation Rate.

Variable	Coefficient	Std Err	t-Statistic	P> t
Sustainable Tax (%)	-0.408	0.039	-10.526	0.000
Inflation Rate (%)	0.000	0.005	0.053	0.958
GDP per Capita (US\$)	-0.000	0.000	-1.670	0.111
Intercept	2.866	0.249	11.487	0.000
R-squared	0.871			

Figure 3. Environmental Sustainability Index Graph (fitted vs observed)

Below is the graph of realized values ESI vs what was expected in a period. The solid line represents the observed ESI; dashed lines indicate expected values based on an independent regression model. The results clearly show that sustainable taxation is in some way related to environment sustainability but they are not a perfect linear relationship.

Analysis and Interpretation

The Sustainable Taxes variable shows a significant negative relationship with the Environmental Sustainability Index values. The ESI environmental performance indicators do not show any compelling relationship with increased green tax rates. The results confirm that tax policy needs to consider multiple environmental aspects when setting sustainability targets. constraints.

CONCLUSION

The Brazilian sustainable tax system demonstrates how economic expansion affects environmental conservation and social equality and tax code creation. The Brazilian tax system assessment demonstrates that sustainable taxation creates economic growth but does not guarantee environmental protection or social fairness. Research indicates that sustainable taxes with positive intentions will create increasing income disparities when they lack fundamental design specifications. The research indicates that sustainable tax revenue expansion results in elevated Gini coefficient readings which could produce rising income inequality.

The implementation of sustainable taxes has stimulated GDP expansion because tax funds dedicated to green technology development and sustainable infrastructure construction stimulate economic growth. Sustainable taxes create barriers that hinder environmental protection initiatives. The sustainable tax index shows a negative relationship with the Environmental Sustainability Index (ESI) which indicates that higher environmentally friendly taxes do not result in better environmental outcomes. A coordinated framework must be established to address the present mismatch between tax policies and environmental and social targets because these objectives should work together instead of opposing each other.

REFERENCES

Banerjee, A., Duflo, E. (2019), *Good economics for hard times: Better answers to our biggest problems*, Public Affairs.

Bhattacharyya, S.C. (2019), *Energy economics: Concepts, issues, markets, and governance*, Springer Nature.

Brazilian Institute of Geography and Statistics (2022), *Economic and social indicators 2022*, IBGE Publications.

Costa, F., Rocha, S., Almeida, C. (2023), "Sustainable taxes and poverty reduction: Evidence from Brazil", *Development Economics Journal*, Vol. 55, No. 2, pp. 230-252.

Elkins, P. (1999), "European environmental taxes and charges: Recent experience, issues and trends", *Ecological Economics*, Vol. 31, No. 1, pp. 39-62.

Gomes, A., Pereira, D. (2023), "Green taxes and deforestation control in Brazil: A policy overview", *Journal of Environmental Economics*, Vol. 50, No. 1, pp. 89-112.

Harvey, D. (2005), *A brief history of neoliberalism*. Oxford University Press.

Heine, D., Norregaard, J., and Parry, I. (2012), "Environmental tax reform: Principles from theory and practice to date", *IMF Working Paper*.

Lima, T. and Santos, M. (2023), "The role of tax incentives in promoting renewable energy development in Brazil", *Energy Policy Journal*, Vol. 78 No. 4, pp. 567-589.

Mankiw, N.G. (2019) *Principles of economics* (8th ed.), Cengage Learning.

Metcalf, G.E., Weisbach, D. (2009), "The design of a carbon tax", *Harvard Environmental Law Review*, Vol. 33, No. 2, pp. 499-556.

Ministry of Finance of Brazil (2021), *Annual report on fiscal policies and environmental taxation*, Government of Brazil

Nordhaus, W. D. (2018), "Climate change: The ultimate challenge for economics", *American Economic Review*, Vol. 108, No. 7, pp. 1911-1944.

OECD (2021), *Tax policy reforms 2021: Special focus on the Covid-19 pandemic*, OECD Publishing.

Oliveira, M., Santos, R., Costa, L. (2022), "The impact of indirect taxes on income inequality in Brazil", *Journal of Taxation and Public Finance*, Vol. 67, No. 3, pp. 345-367.

Pearce, D. (1991), "The role of carbon taxes in adjusting to global warming", *The Economic Journal*, Vol. 101, No. 407, pp. 938-948.

Piketty, T. (2014), *Capital in the twenty-first century*, Harvard University Press.

Raworth, K. (2017), *Doughnut economics: Seven ways to think like a 21st-century economist*, Chelsea Green Publishing.

Sachs, J.D., Warner, A. M. (2022), "The global economic impacts of environmental taxation", *Global Environmental Change*, Vol. 31, No. 3, pp. 89-103.

Schmalensee, R., Stavins, R. N. (2017), "The design of environmental markets: What have we learned from experience with cap and trade?", *Oxford Review of Economic Policy*, Vol. 33, No. 4, pp. 572-588.

Silva, J., Araújo, P. (2021), "Carbon taxation in Brazil: Emission reduction and revenue generation", *Environmental Economics Review*, Vol. 45, No. 2, pp. 123-145.

Stern, N. (2007), *The economics of climate change: The Stern review*, Cambridge University Press.

Stiglitz, J.E. (2019), *People, power, and profits: Progressive capitalism for an age of discontent*, W.W. Norton & Company.

UNEP (2019), *Emissions Gap Report 2019*, United Nations Environment Programme.

World Bank (2020), *Brazil economic update: Tackling income inequality and promoting inclusive growth*, World Bank Publications.